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Notation

Abstract

For a given plane curve we review the explicit constructions of:
the 1− 1 correspondence between linear determinantal
representations and rank one (non-exceptional) bundles,
the 1− 1 correspondence between pfaffian representations
and rank two (non-exceptional with fixed determinant)
bundles.

We try to generalize these results to construct determinantal
representations which would encode rank 3 bundles as its
cokernel.
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Notation

we work over the field C, sometimes we restrict to R,
F (x , y , z) homogeneous polynomial of degree d ,
C a smooth curve defined by {F (x , y , z) = 0} ⊂ P2.

Weierstrass cubic: y2z = x3 + p xz2 + q z3, p,q ∈ C,
or y2z = x(x + θ1z)(x + θ2z), θ1, θ2 ∈ C,

Hesse cubic: λ(x3 + y3 + z3) = µ xyz, λ, µ ∈ P1.
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Definition: Determinantal representation

It is very useful to represent F of degree d as a determinant of
some matrix:
Find a rd × rd matrix with linear terms

M(x , y , z) = xA + yB + zC

such that

det M(x , y , z) = c F r (x , y , z), for some c 6= 0.

Matrix M is a determinantal representation (of order r ) of C.
Clearly, multiplying a determinantal representation by invertible
matrices preserves the underlying curve. Two determinantal
representations M and M ′ are equivalent if

M ′ = XMY for some X ,Y ∈ GL(rd ,C).

We consider determinantal representations up to equivalence.
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Pfaffian representation

Pfaffian representation is a representation of order 2 with all
2d × 2d matrices being skew-symmetric. Study of pfaffian
representations is strongly related to and motivated by
determinantal representations. Every d × d determinantal
representation A induces decomposable pfaffian representation[

0 M
−M t 0

]
.

Note that the equivalence relation is well defined since[
0 XMY

−(XMY )t 0

]
=

[
X 0
0 Y t

] [
0 M
−M t 0

] [
X t 0
0 Y

]
.
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Theorem (Beauville, 2000: plane curves as determinants)

Let L be a line bundle of degree g − 1 = 1
2d(d − 3) on C with

H0(C,L) = 0. Then there exists a d × d linear matrix M such
that F = det M and an exact sequence

0→ OP2(−2)d M−→ OP2(−1)d → L→ 0.

Conversely, let M be a d × d linear matrix such that F = det M.
Then the cokernel of M : OP2(−2)d → OP2(−1)d is a line
bundle L on C of degree g − 1 with H0(C,L) = 0.

This is the famous 1− 1 correspondence between
detreminantal representations of hypersurfaces and points on
the Jacobian variety, first described in Cook and Thomas, Line
bundles and homogeneous matrices, (1979).
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Theorem (Beauville, 2000: plane curves as pfaffians)
Let E be a rank 2 vector bundle on C with det E ∼= ωC and
H0(C,E) = 0. Then E admits a minimal resolution

0→ OP2(−2)2d A−→ OP2(−1)2d → E → 0,

where the matrix A is linear skew-symmetric and F = Pf A.

Note that the condition H0(C,E) = 0 implies that E is
semi-stable.

A. Buckley Matrices defining plane curves



Introduction
Determinantal representations vs vector bundles

Motivation: elliptic curves
Generalisations to rank r = 3

Weierstrass form

Definition
Cayley–Hamilton theorem→ explicit representations
Generalizations to rank 3

M̃ ·M = det M · Idd

Theorem (Dolgachev’s explicit 1− 1 correspondence)

Let L ∈ Pic(C)g−1 \Wg−1, where Pic(C)g−1 is the Picard variety
of degree g − 1 invertible sheaves (divisor classes) on C and
Wg−1 its subset of effective divisors. Then L and
L−1 ⊗OC(d − 3) define a unique regular map

C →
∣∣∣H0 (C,L(1))∨ ⊗ H0

(
C,L(1)−1 ⊗OC(d − 1)

)∣∣∣
which extends to a rational map on P2. In coordinates, this is
the adjugate matrix of a determinantal representation of C.
Conversely, the kernel and cokernel (twisted by −1) of a given
determinantal representation define L and L−1 as above.
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We generalize Dolgachev’s construction to rank 2:
Define the pfaffian adjoint of A to be the skew-symmetric matrix

Ã =


0

. . . (−1)i+j Pfij A
. . .

0

 .
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Ã · A = Pf A · Id2d

Proposition ( − and Košir’s explicit 1− 1 correspondence )

Let C be a smooth plane curve of degree d. To every rank 2
vector bundle E on C with properties

(i) h0(C, E) = 2d,
(ii) H0(C, E(−1)) = 0,
(iii) det E =

∧2 E = OC(d − 1)

we can assign a pfaffian representation AE . In particular,
isomorphic bundles induce equivalent representations.
Conversly, the cokernel of a pfaffian representation of C is a
rank 2 vector bundle on C with the above properties.
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Buckley and Košir’s explicit 1− 1 correspondence

Note that E(−1) has determinant OC(d − 3) = ωC and is exactly
the rank 2 bundle from Beauville’s pfaffian representation.

We will define a map ψ from C to the space of 2d × 2d
skew-symmetric matrices with entries from the space of
homogeneous polynomials of degree d − 1.
Let U = H0(C, E) be the 2d dimensional vector space of global
sections of E . Choose a basis {s1, . . . , s2d} for U and define

C 3 x
ψ7→

∑
1≤i<j≤2d

(si(x)∧sj(x))(Eij−Eji) =


0

. . . si(x) ∧ sj(x)
. . .

0

 .
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Since si ∧ sj ∈
∧2 U, by property (iii) the map ψ extends to

Ψ: P(E) −→ P(
2∧

U)

given by a linear system of plane curves of degree d − 1. In
coordinates it equals to a 2d × 2d skew-symmetric matrix with
entries from the space of homogeneous polynomials of degree
d − 1. This is exactly the adjoint matrix of the pfaffian
representation.
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How can we generalize the identities of Cayley–Hamilton
theorem: M̃ ·M = det M Idd and Ã · A = Pf A Id2d?

Ã · A = Tri A Id3d

Let C be a smooth plane curve of degree d. To every rank 3
vector bundle E on C with the properties

(i) h0(C, E(1)) = 3d,
(ii) H0(C, E) = 0,
(iii) det E =

∧3 E =??OC(d − 3)
=?? line bundle of degree 3

2d(d − 3),
we can assign a representation AE .
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Torsion points
Representations of Weierstrass cubics

Symmetric determinantal representations

Background

Elliptic curves have profound influence in mathematics. Since
ancient times they turn up in the most astonishing places,
joining together algebra and geometry. Recently they have
become popular in number theory (cryptography of elliptic
curves), optimization (semidefinite programming SDP) and
also in theoretical physics (mirror symmetry of elliptic curves).
The abundance of results is due to the following two classical
facts for smooth plane cubics:

It can be brought by a change of coordinates into the
Weierstrass canonical form, or equivalently the Hesse
canonical form.
It can be equipped by a group law (induced by the
Jacobian group variety).
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Atiyah: Vector bundles over an elliptic curve, 1957

Elliptic curves are of tame representation type according to
Atiyah (1957). In particular, on a given cubic curve the number
of indecomposable ACM bundles of rank r equals to the
number of r -torsion points.

Theorem
For any r > 0 there exists an indecomposable vector bundle Fr
defined inductively by 0→ OC → Fr → Fr−1 → 0, where
F0 = OC , h0(Fr ) = 1 and Fr ∼= F v

r .
Moreover, for any indecomposable bundle E of rank r and
degree 0 there exists a line bundle L such that E ∼= Fr ⊗ L and
det E = L⊗r .

A. Buckley Matrices defining plane curves



Introduction
Determinantal representations vs vector bundles

Motivation: elliptic curves
Generalisations to rank r = 3

Weierstrass form

Torsion points
Representations of Weierstrass cubics

Symmetric determinantal representations

Rank 2

Consider a rank 2 bundle E with det E = OC and h0(E) = 0.

A decomposable E is of the form L⊕ L−1 for OC 6= L ∈ Pic0(C).
This gives a block pfaffian representation.

An indecomposable bundle is isomorphic to the nontrivial
extension of an (one of the three) even theta characteristics

0→ κi → E → κi → 0.

In other words, κ1, κ2, κ3 are the 2−torsion elements in Pic0(C).

A. Buckley Matrices defining plane curves



Introduction
Determinantal representations vs vector bundles

Motivation: elliptic curves
Generalisations to rank r = 3

Weierstrass form

Torsion points
Representations of Weierstrass cubics

Symmetric determinantal representations

Ravindra and Tripathi, 2014 predicted indecomposable
3r × 3r representations induced by repeated
extensions of r−torsion line bundles.

Consider a minimal matrix A such that

Coker
[
OP2(−2)3r A−→ OP2(−1)3r

]
is an indecomposable rank r bundle E with trivial determinant.
Then det A = F r .
Furthermore, such E and A exist: for any rank r bundle E
obtained by the Atiyah construction holds that E is 1−regular,
h0(E(−µ)) = 0 for µ ≥ 0 and det E = OC . This implies that E
has 3r minimal generators in degree 1 and a minimal resolution

0→ OP2(−2)3r→OP2(−1)3r → E → 0.
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Determinantal representations of Weierstrass cubics

We explicitly construct all determinantal representations of size
3× 3, 6× 6 and 9× 9.
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Vinnikov explicitly parametrised determinantal representations
by points on the affine curve:

Lemma
Consider the cubic in Weierstrass form:

F (x , y , z) = −yz2 + x3 + αxy2 + βy3.

A complete set of determinantal representations of F is

x Id +z

 0 1 0
0 0 1
0 0 0

+ y

 t
2 s α + 3

4 t2

0 −t −s
−1 0 t

2

 ,

where s2 = t3 + αt + β. Note that the last equation is exactly
the affine part F (t ,1, s).
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Main theorem

Let C be a smooth cubic in the Weierstrass form

F (x , y , z) = yz2 − x(x − y)(x − λy).

A complete set of pfaffian representations of F consists of three
indecomposable representations and for the whole affine curve
of decomposable representations:

x



0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0


+z



0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0


+y



0 1 0 3t2−2t(1+λ)−(1−λ)2

4 0 t−1−λ
2

0 0 0 −t 0
0 t−1−λ

2 0 −1
0 0 0

0 0
0


for t = 0,1, λ;
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and

x



0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0


+z



0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0


+y



0 0 0 3t2−2t(1+λ)−(1−λ)2

4 s t−1−λ
2

0 0 −s −t 0
0 t−1−λ

2 0 −1
0 0 0

0 0
0


,

where s2 = t(t − 1)(t − λ). Note that the last equation is exactly
the affine part F (t ,1, s).
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Theta characteristic

It is obvious that a 3× 3 determinantal representation is
symmetric if and only if L ∼= L−1. Such L is by definition a
non-effective theta characteristic i.e., L⊗2 ∼= ωC and
H0(C,L) = {0}. Since every nonsingular cubic has exactly
three even theta characteristics we get:

Corollary
A smooth cubic curve has three symmetric determinantal
representations.

A. Buckley Matrices defining plane curves



Introduction
Determinantal representations vs vector bundles

Motivation: elliptic curves
Generalisations to rank r = 3

Weierstrass form

Torsion points
Representations of Weierstrass cubics
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The following theorem constructs all three symmetric 3× 3
representations:

Theorem (J. Harris, 1979, p. 696)

There exist precisely three points (a,b) ∈ C2 such that

aF = Hes(bF + Hes(F )),

where Hes is the Hessian i.e., the determinant of the second
partial derivatives matrix. The resulting three symmetric
determinantal representations of F are inequivalent.

Using elementary transformations [Vinnikov] we can obtain all
3× 3 determinantal representations of F from a given one.
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Matrices of format 3d × 3d × 3d and rank 3
Generalise the definitions of det and Pf
Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

How can we generalize the identities of Cayley–Hamilton
theorem: M̃ ·M = det M Idd and Ã · A = Pf A Id2d?

Ã · A = Tri A Id3d

Let C be a smooth plane curve of degree d. To every rank 3
vector bundle E on C with the properties

(i) h0(C, E) = 3d,
(ii) H0(C, E(−µ)) = 0 for µ ≥ 1,
(iii) det E =

∧3 E = OC(d − 1)!!,
we can assign a representation AE .

Remark: for E = L1 ⊕ L2 ⊕ L3 the summands Li do not induce a
determinantal representations (unlike in the rank 2 case) since
they are of wrong degree.
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Matrices of format 3d × 3d × 3d and rank 3
Generalise the definitions of det and Pf
Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

We can define a map ψ from C to the space of 3d × 3d × 3d
matrices.
Choose a basis {s1, . . . , s3d} for H0(C, E) and define

x
ψ7→

∑
1≤i<j<k≤3d

(si(x)∧sj(x)∧sk (x))(Eijk−Ejik +Ejki+Ekij−Ekji−Eikj)

which extends to

Ψ: P(E) −→ P(
3∧

U).

In coordinates it equals to a 3d × 3d × 3d matrix with entries
from the space of homogeneous polynomials of degree d − 1.
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Matrices of format 3d × 3d × 3d and rank 3
Generalise the definitions of det and Pf
Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

Rank of the constructed 3d × 3d × 3d matrix along C is 3.

For an analogue of the Cayley-Hamilton theorem
for higher format matrices we need to define:

determinant,
multiplication,
identity,
trian.
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Matrices of format 3d × 3d × 3d and rank 3
Generalise the definitions of det and Pf
Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

Determinant

Let A be a d × d matrix. By definition,

det(A) =
∑
σ∈Sd

sgn(σ)
d∏

i=1

ai,σ(i).

A permutation

σ =

[
1 2 3 · · · d
j1 j2 j3 · · · jd

]
can be written as {(1, j1), (2, j2), . . . , (d , jd )}.

Then det(A) =
∑
σ∈Sd

sgn(σ)
∏

a1,j1a2,j2 · · · ad ,jd .
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Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

Pfaffian

Let A be a 2d × 2d skew-symmetric matrix.

Pf(A) =
∑
σ∈Π

sgn(σ)
d∏

i=1

aσ(2i−1),σ(2i), where we sum over

Π = {σ ∈ Sd : σ(2i − 1) < σ(2i) and σ(2i − 1) < σ(2i + 1).

A partition of {1,2, . . . ,2d} into pairs can be written as
{(i1, j1), (i2, j2), . . . , (id , jd )} with ik < jk and ik < ik+1.

Let σ =

[
1 2 3 4 · · · 2d
i1 j1 i2 j2 · · · jd

]
be the corresponding permutation.

Then Pf(A) =
∑
σ∈Π

sgn(σ)
∏

ai1,j1ai2,j2 · · · aid ,jd .
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Matrices of format 3d × 3d × 3d and rank 3
Generalise the definitions of det and Pf
Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

Trian

A partition of {1,2, . . . ,3d} into triplets can be written as
{(i1, j1, k1), (i2, j2, k2), . . . , (id , jd , kd )} with im < jm < km and
im < im+1.

Let σ =

[
1 2 3 4 · · · 3d
i1 j1 k1 i2 · · · kd

]
be the corresponding permutation.

We could define

Tri(A) =
∑
σ∈Π

sgn(σ)
∏

ai1,j1,k1ai2,j2,k2 · · · aid ,jd ,kd .

In this case A is a matrix of format 3d × 3d × 3d representing a
three dimensional tensor.
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Matrices of format 3d × 3d × 3d and rank 3
Generalise the definitions of det and Pf
Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

A. Ayyer: Determinants and Perfect Matchings,
J. Combin. Theory (2013)

Ayyer gives a combinatorial interpretation of the determinant of
a matrix as a generating function over Brauer diagrams. As a
corollary he obtains Cayley’s relation between determinants
and Pfaffians.
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Group actions on tensor products of vector spaces

Recall irreducible representations of Sn:
the trivial 1-dim representation;
the 1-dim sign representation ε : S3 → ±1,
S3 also has the geometric (or standard) 2-dim
representation.

The blocks of the trivial and the sign representation in V⊗n are
Symn V and ∧nV respectively. In particular,

S2 induces V ⊗ V = Sym2 V ⊕ ∧2V

and

S3 induces V ⊗ V ⊗ V = Sym3 V ⊕ ∧3V ⊕ two copies of V .
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Corollary

A matrix [vijk ] of t × t × t format can be written in a unique way
as a sum of 6 matrices:

vijk = aijk + bijk + ωcijk + 0 + eijk + 0,
vjki = aijk + bijk + cijk + 0 + ωeijk + 0,
vkij = aijk + bijk + ω2cijk + 0 + ω2eijk + 0,
vjik = aijk − bijk + 0 + ωdijk + 0 + fijk ,
vkji = aijk − bijk + 0 + dijk + 0 + ωfijk ,
vikj = aijk − bijk + 0 + ω2dijk + 0 + ω2fijk .

Here ω is the third root of unity.

Aim: Extend Ayer’s construction to matrices with
cijk = dijk = eijk = fijk = 0 to obtain det[bijk ] = trian3.
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Ayyer’s combinatorial proof: det = Pf2

Group actions on tensor products of vector spaces

Cayley–Hamilton theorem generalizes to matrices of even
format. They appear in Finsler geometry (relativity and gauge
theory) and in fourth-rank gravity.

Tapia, 2008: Invariants and polynomial identities for higher rank
matrices

Define A−1 := 1
det A

∂ det A
∂A , which is in terms of components

Aijkl = 1
det A

∂ det A
∂Aijkl

.

Then, Ai k1k2k3Aj k1k2k3 = δi
j .

Note that a 3d × 3d × 3d matrix needs to be put into
3d × 3d × 3d × 3d × 3d × 3d format to obtain a nonzero
determinant.
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Weierstrass canonical form

Theorem
By a projective change of coordinates, every irreducible curve
can be brought into the Weierstrass form

y2z = x3 + pxz2 + qz3, p,q ∈ C

or equivalently y2z = x(x + θ1z)(x + θ2z), θ1, θ2 ∈ C.

Moreover, every reduced curve is projectively equivalent to one
of the

x3, x2y , xy(x + y), xyz or
(αx + βy + γz)(x2 − yz) for some α, β, γ ∈ C.
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Why do we want the Weierstrass canonical form?

Corollary
Any coordinate independent statement that holds for a
Weierstrass cubic, holds for any irreducible cubic curve.

This implies:
Determinantal representations of any cubic curve C are in
one to one correspondence with affine points on C.
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Inflection point

Every irreducible cubic has inflection points:
{F = 0} ∩ {Hes F = 0} ⊂ P2.

Proposition
If we find an inflection point on C, we can put it into the
Weierstrass form.

Change the coordinates so that the inflection point is (0,1,0)
and the inflection tangent is z = 0. Considering all possible
monomials occurring in F yields the Weierstrass form.

Corollary
When the defining polynomial F is real, a real change of
coordinates gives the Weierstrass form with p,q ∈ R.
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Algorithm

The enumerative problem of locating flexes of a plane
cubic is solvable, since the corresponding Galois group is
solvable [Harris, 1979].
When C contains a rational point [Silverman and Tate,
1992] provided an algorithm that puts it into a Weierstrass
form.
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