Matrices defining plane curves

Anita Buckley

Department of Mathematics
Faculty of Mathematics and Physics
University of Ljubljana
Slovenia
ACM Bundles on Algebraic Varieties 15-19 June 2015 Ankara, Turkey

Outline I

(9) Introduction

- Abstract
- Notation
(2) Determinantal representations vs vector bundles
- Definition
- Cayley-Hamilton theorem \rightarrow explicit representations
- Generalizations to rank 3
(3) Motivation: elliptic curves
- Torsion points
- Representations of Weierstrass cubics
- Symmetric determinantal representations

4. Generalisations to rank $r=3$

- Matrices of format $3 d \times 3 d \times 3 d$ and rank 3

Outline II

- Generalise the definitions of det and Pf
- Ayyer's combinatorial proof: det $=\mathrm{Pf}^{2}$
- Group actions on tensor products of vector spaces
(5) Weierstrass form
- Canonical form
- Inflection point
- Algorithm

Abstract

For a given plane curve we review the explicit constructions of:

- the 1-1 correspondence between linear determinantal representations and rank one (non-exceptional) bundles,
- the 1 - 1 correspondence between pfaffian representations and rank two (non-exceptional with fixed determinant) bundles.
We try to generalize these results to construct determinantal representations which would encode rank 3 bundles as its cokernel.

Notation

- we work over the field \mathbb{C}, sometimes we restrict to \mathbb{R},
- $F(x, y, z)$ homogeneous polynomial of degree d,
- \mathcal{C} a smooth curve defined by $\{F(x, y, z)=0\} \subset \mathbb{P}^{2}$.

Weierstrass cubic: $y^{2} z=x^{3}+p x z^{2}+q z^{3}, \quad p, q \in \mathbb{C}$,
or

$$
y^{2} z=x\left(x+\theta_{1} z\right)\left(x+\theta_{2} z\right), \quad \theta_{1}, \theta_{2} \in \mathbb{C}
$$

Hesse cubic: $\quad \lambda\left(x^{3}+y^{3}+z^{3}\right)=\mu x y z, \quad \lambda, \mu \in \mathbb{P}^{1}$.

Definition: Determinantal representation

It is very useful to represent F of degree d as a determinant of some matrix:
Find a $r d \times r d$ matrix with linear terms

$$
M(x, y, z)=x A+y B+z C
$$

such that

$$
\operatorname{det} M(x, y, z)=c F^{r}(x, y, z), \text { for some } c \neq 0
$$

Matrix M is a determinantal representation (of order r) of \mathcal{C}. Clearly, multiplying a determinantal representation by invertible matrices preserves the underlying curve. Two determinantal representations M and M^{\prime} are equivalent if

$$
M^{\prime}=X M Y \text { for some } X, Y \in \mathrm{GL}(r d, \mathbb{C}) .
$$

Definition: Determinantal representation

It is very useful to represent F of degree d as a determinant of some matrix:
Find a $r d \times r d$ matrix with linear terms

$$
M(x, y, z)=x A+y B+z C
$$

such that

$$
\operatorname{det} M(x, y, z)=c F^{r}(x, y, z), \text { for some } c \neq 0
$$

Matrix M is a determinantal representation (of order r) of \mathcal{C}. Clearly, multiplying a determinantal representation by invertible matrices preserves the underlying curve. Two determinantal representations M and M^{\prime} are equivalent if

$$
M^{\prime}=X M Y \text { for some } X, Y \in \mathrm{GL}(r d, \mathbb{C})
$$

We consider determinantal representations up to equivalence.

Pfaffian representation

Pfaffian representation is a representation of order 2 with all $2 d \times 2 d$ matrices being skew-symmetric. Study of pfaffian representations is strongly related to and motivated by determinantal representations. Every $d \times d$ determinantal representation A induces decomposable pfaffian representation

$$
\left[\begin{array}{cc}
0 & M \\
-M^{t} & 0
\end{array}\right]
$$

Note that the equivalence relation is well defined since

$$
\left[\begin{array}{cc}
0 & X M Y \\
-(X M Y)^{t} & 0
\end{array}\right]=\left[\begin{array}{cc}
X & 0 \\
0 & Y^{t}
\end{array}\right]\left[\begin{array}{cc}
0 & M \\
-M^{t} & 0
\end{array}\right]\left[\begin{array}{cc}
X^{t} & 0 \\
0 & Y
\end{array}\right] .
$$

Theorem (Beauville, 2000: plane curves as determinants)

Let L be a line bundle of degree $g-1=\frac{1}{2} d(d-3)$ on \mathcal{C} with $H^{0}(\mathcal{C}, L)=0$. Then there exists a $d \times d$ linear matrix M such that $F=\operatorname{det} M$ and an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2)^{d} \xrightarrow{M} \mathcal{O}_{\mathbb{P}^{2}}(-1)^{d} \rightarrow L \rightarrow 0 .
$$

Conversely, let M be ad $\times d$ linear matrix such that $F=\operatorname{det} M$. Then the cokernel of $M: \mathcal{O}_{\mathbb{P}^{2}}(-2)^{d} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{d}$ is a line bundle L on \mathcal{C} of degree $g-1$ with $H^{0}(\mathcal{C}, L)=0$.

This is the famous $1-1$ correspondence between
detreminantal representations of hypersurfaces and points on the Jacobian variety, first described in Cook and Thomas, Line bundles and homogeneous matrices, (1979)

Theorem (Beauville, 2000: plane curves as determinants)

Let L be a line bundle of degree $g-1=\frac{1}{2} d(d-3)$ on \mathcal{C} with $H^{0}(\mathcal{C}, L)=0$. Then there exists a $d \times d$ linear matrix M such that $F=\operatorname{det} M$ and an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2)^{d} \xrightarrow{M} \mathcal{O}_{\mathbb{P}^{2} 2}(-1)^{d} \rightarrow L \rightarrow 0 .
$$

Conversely, let M be a $d \times d$ linear matrix such that $F=\operatorname{det} M$. Then the cokernel of $M: \mathcal{O}_{\mathbb{P}^{2}}(-2)^{d} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{d}$ is a line bundle L on \mathcal{C} of degree $g-1$ with $H^{0}(\mathcal{C}, L)=0$.

This is the famous $1-1$ correspondence between detreminantal representations of hypersurfaces and points on the Jacobian variety, first described in Cook and Thomas, Line bundles and homogeneous matrices, (1979).

Theorem (Beauville, 2000: plane curves as pfaffians)

Let E be a rank 2 vector bundle on \mathcal{C} with det $E \cong \omega_{\mathcal{C}}$ and $H^{0}(\mathcal{C}, E)=0$. Then E admits a minimal resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2)^{2 d} \xrightarrow{A} \mathcal{O}_{\mathbb{P}^{2}}(-1)^{2 d} \rightarrow E \rightarrow 0,
$$

where the matrix A is linear skew-symmetric and $F=\operatorname{Pf} A$.
Note that the condition $H^{0}(\mathcal{C}, E)=0$ implies that E is semi-stable.

$\tilde{M} \cdot M=\operatorname{det} M \cdot \operatorname{ld}_{d}$

Theorem (Dolgachev's explicit 1 - 1 correspondence)

Let $L \in \operatorname{Pic}(\mathcal{C})^{g-1} \backslash W_{g-1}$, where $\operatorname{Pic}(\mathcal{C})^{g-1}$ is the Picard variety of degree $g-1$ invertible sheaves (divisor classes) on \mathcal{C} and W_{g-1} its subset of effective divisors. Then L and
$L^{-1} \otimes \mathcal{O}_{C}(d-3)$ define a unique regular map

$$
\mathcal{C} \rightarrow\left|H^{0}(\mathcal{C}, L(1))^{\vee} \otimes H^{0}\left(\mathcal{C}, L(1)^{-1} \otimes \mathcal{O}_{\mathcal{C}}(d-1)\right)\right|
$$

which extends to a rational map on \mathbb{P}^{2}. In coordinates, this is the adjugate matrix of a determinantal representation of \mathcal{C}.
Conversely, the kernel and cokernel (twisted by -1) of a given determinantal representation define L and L^{-1} as above.

We generalize Dolgachev's construction to rank 2:
Define the pfaffian adjoint of A to be the skew-symmetric matrix

$$
\tilde{A}=\left[\begin{array}{llll}
0 & & & \\
& \ddots & (-1)^{i+j} \mathrm{Pf}^{\mathrm{j} j} A \\
& & \ddots & \\
& & 0
\end{array}\right] .
$$

$\tilde{A} \cdot A=\operatorname{Pf} A \cdot \operatorname{ld}_{2 d}$

Proposition (- and Košir's explicit 1 - 1 correspondence)

Let C be a smooth plane curve of degree d. To every rank 2 vector bundle \mathcal{E} on C with properties
(i) $h^{0}(C, \mathcal{E})=2 d$,
(ii) $H^{0}(C, \mathcal{E}(-1))=0$,
(iii) $\operatorname{det} \mathcal{E}=\Lambda^{2} \mathcal{E}=\mathcal{O}_{C}(d-1)$
we can assign a pfaffian representation $A_{\mathcal{E}}$. In particular, isomorphic bundles induce equivalent representations.
Conversly, the cokernel of a pfaffian representation of C is a rank 2 vector bundle on C with the above properties.

Buckley and Košir's explicit 1 - 1 correspondence

Note that $\mathcal{E}(-1)$ has determinant $\mathcal{O}_{C}(d-3)=\omega_{\mathcal{C}}$ and is exactly the rank 2 bundle from Beauville's pfaffian representation.

We will define a map ψ from C to the space of $2 d \times 2 d$
skew-symmetric matrices with entries from the space of
homogeneous polynomials of degree $d-1$
Let $U=H^{0}(C, \mathcal{E})$ be the $2 d$ dimensional vector space of global
sections of \mathcal{E}. Choose a basis $\left\{s_{1}, \ldots, s_{2 d}\right\}$ for U and define

Buckley and Košir's explicit 1 - 1 correspondence

Note that $\mathcal{E}(-1)$ has determinant $\mathcal{O}_{C}(d-3)=\omega_{\mathcal{C}}$ and is exactly the rank 2 bundle from Beauville's pfaffian representation.
We will define a map ψ from C to the space of $2 d \times 2 d$ skew-symmetric matrices with entries from the space of homogeneous polynomials of degree $d-1$.
Let $U=H^{0}(C, \mathcal{E})$ be the $2 d$ dimensional vector space of global sections of \mathcal{E}. Choose a basis $\left\{s_{1}, \ldots, s_{2 d}\right\}$ for U and define

Since $s_{i} \wedge s_{j} \in \Lambda^{2} U$, by property (iii) the map ψ extends to

$$
\Psi: \mathbb{P}(\mathcal{E}) \longrightarrow \mathbb{P}\left(\bigwedge^{2} U\right)
$$

given by a linear system of plane curves of degree $d-1$. In coordinates it equals to a $2 d \times 2 d$ skew-symmetric matrix with entries from the space of homogeneous polynomials of degree $d-1$. This is exactly the adjoint matrix of the pfaffian representation.

How can we generalize the identities of Cayley-Hamilton theorem: $\tilde{M} \cdot M=\operatorname{det} M \operatorname{ld}_{d}$ and $\tilde{A} \cdot A=\operatorname{Pf} A \operatorname{ld}_{2 d}$?

$\tilde{A} \cdot A=\operatorname{Tri} A \operatorname{ld}_{3 d}$

Let C be a smooth plane curve of degree d. To every rank 3 vector bundle \mathcal{E} on C with the properties
(i) $h^{0}(C, \mathcal{E}(1))=3 d$,
(ii) $H^{0}(C, \mathcal{E})=0$,
(iii) $\operatorname{det} \mathcal{E}=\Lambda^{3} \mathcal{E}=$?? $\mathcal{O}_{C}(d-3)$
$=$?? line bundle of degree $\frac{3}{2} d(d-3)$,
we can assign a representation $A_{\mathcal{E}}$.

Background

Elliptic curves have profound influence in mathematics. Since ancient times they turn up in the most astonishing places, joining together algebra and geometry. Recently they have become popular in number theory (cryptography of elliptic curves), optimization (semidefinite programming SDP) and also in theoretical physics (mirror symmetry of elliptic curves).
The abundance of results is due to the following two classical
facts for smooth plane cubics:

- It can be brought by a change of coordinates into the Weierstrass canonical form, or equivalently the Hesse canonical form.
- It can be equipped by a group law (induced by the Jacobian group variety).

Background

Elliptic curves have profound influence in mathematics. Since ancient times they turn up in the most astonishing places, joining together algebra and geometry. Recently they have become popular in number theory (cryptography of elliptic curves), optimization (semidefinite programming SDP) and also in theoretical physics (mirror symmetry of elliptic curves).
The abundance of results is due to the following two classical facts for smooth plane cubics:

- It can be brought by a change of coordinates into the Weierstrass canonical form, or equivalently the Hesse canonical form.
- It can be equipped by a group law (induced by the Jacobian group variety).

Atiyah: Vector bundles over an elliptic curve, 1957

Elliptic curves are of tame representation type according to Atiyah (1957). In particular, on a given cubic curve the number of indecomposable ACM bundles of rank r equals to the number of r-torsion points.

Theorem

For any $r>0$ there exists an indecomposable vector bundle F_{r} defined inductively by $0 \rightarrow \mathcal{O}_{C} \rightarrow F_{r} \rightarrow F_{r-1} \rightarrow 0$, where $F_{0}=\mathcal{O}_{C}, h^{0}\left(F_{r}\right)=1$ and $F_{r} \cong F_{r}^{v}$.
Moreover, for any indecomposable bundle E of rank r and degree 0 there exists a line bundle L such that $E \cong F_{r} \otimes L$ and $\operatorname{det} E=L^{\otimes r}$.

Rank 2

Consider a rank 2 bundle E with $\operatorname{det} E=\mathcal{O}_{C}$ and $h^{0}(E)=0$.
A decomposable E is of the form $L \oplus L^{-1}$ for $\mathcal{O}_{C} \neq L \in \operatorname{Pic}^{0}(C)$. This gives a block pfaffian representation.
An indecomposable bundle is isomorphic to the nontrivial extension of an (one of the three) even theta characteristics

$$
0 \rightarrow \kappa_{i} \rightarrow E \rightarrow \kappa_{i} \rightarrow 0
$$

In other words, $\kappa_{1}, \kappa_{2}, \kappa_{3}$ are the 2 -torsion elements in $\mathrm{Pic}^{0}(C)$.

Ravindra and Tripathi, 2014 predicted indecomposable $3 r \times 3 r$ representations induced by repeated extensions of r-torsion line bundles.

Consider a minimal matrix A such that

$$
\operatorname{Coker}\left[\mathcal{O}_{\mathbb{P}^{2}}(-2)^{3 r} \xrightarrow{A} \mathcal{O}_{\mathbb{P}^{2}}(-1)^{3 r}\right]
$$

is an indecomposable rank r bundle E with trivial determinant.
Then $\operatorname{det} A=F^{r}$.
Furthermore, such E and A exist: for any rank r bundle E obtained by the Atiyah construction holds that E is 1 -regular, $h^{0}(E(-\mu))=0$ for $\mu \geq 0$ and $\operatorname{det} E=\mathcal{O}_{C}$. This implies that E has $3 r$ minimal generators in degree 1 and a minimal resolution

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2)^{3 r} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1)^{3 r} \rightarrow E \rightarrow 0 .
$$

Determinantal representations of Weierstrass cubics

We explicitly construct all determinantal representations of size $3 \times 3,6 \times 6$ and 9×9.

Vinnikov explicitly parametrised determinantal representations by points on the affine curve:

Lemma

Consider the cubic in Weierstrass form:

$$
F(x, y, z)=-y z^{2}+x^{3}+\alpha x y^{2}+\beta y^{3} .
$$

A complete set of determinantal representations of F is

$$
x \operatorname{ld}+z\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+y\left(\begin{array}{ccc}
\frac{t}{2} & s & \alpha+\frac{3}{4} t^{2} \\
0 & -t & -s \\
-1 & 0 & \frac{t}{2}
\end{array}\right)
$$

where $s^{2}=t^{3}+\alpha t+\beta$. Note that the last equation is exactly the affine part $F(t, 1, s)$.

Main theorem

Let C be a smooth cubic in the Weierstrass form

$$
F(x, y, z)=y z^{2}-x(x-y)(x-\lambda y)
$$

A complete set of pfaffian representations of F consists of three indecomposable representations and for the whole affine curve of decomposable representations:

for $t=0,1, \lambda$;
and

where $s^{2}=t(t-1)(t-\lambda)$. Note that the last equation is exactly the affine part $F(t, 1, s)$.

Theta characteristic

It is obvious that a 3×3 determinantal representation is symmetric if and only if $L \cong L^{-1}$. Such L is by definition a non-effective theta characteristic i.e., $L^{\otimes 2} \cong \omega_{C}$ and $H^{0}(C, L)=\{0\}$. Since every nonsingular cubic has exactly three even theta characteristics we get:

Corollary

A smooth cubic curve has three symmetric determinantal representations.

The following theorem constructs all three symmetric 3×3 representations:

Theorem (J. Harris, 1979, p. 696)

There exist precisely three points $(a, b) \in \mathbb{C}^{2}$ such that

$$
a F=\operatorname{Hes}(b F+\operatorname{Hes}(F))
$$

where Hes is the Hessian i.e., the determinant of the second partial derivatives matrix. The resulting three symmetric determinantal representations of F are inequivalent.

Using elementary transformations [Vinnikov] we can obtain all
3×3 determinantal representations of F from a given one.

The following theorem constructs all three symmetric 3×3 representations:

Theorem (J. Harris, 1979, p. 696)
There exist precisely three points $(a, b) \in \mathbb{C}^{2}$ such that

$$
a F=\operatorname{Hes}(b F+\operatorname{Hes}(F))
$$

where Hes is the Hessian i.e., the determinant of the second partial derivatives matrix. The resulting three symmetric determinantal representations of F are inequivalent.

Using elementary transformations [Vinnikov] we can obtain all 3×3 determinantal representations of F from a given one.

How can we generalize the identities of Cayley-Hamilton theorem: $\tilde{M} \cdot M=\operatorname{det} M \operatorname{ld}_{d}$ and $\tilde{A} \cdot A=\operatorname{Pf} A \operatorname{ld}_{2 d}$?

$\tilde{A} \cdot A=\operatorname{Tri} A \operatorname{ld}_{3 d}$

Let C be a smooth plane curve of degree d. To every rank 3 vector bundle \mathcal{E} on C with the properties
(i) $h^{0}(C, \mathcal{E})=3 d$,
(ii) $H^{0}(C, \mathcal{E}(-\mu))=0$ for $\mu \geq 1$,
(iii) $\operatorname{det} \mathcal{E}=\Lambda^{3} \mathcal{E}=\mathcal{O}_{C}(d-1)!!$,
we can assign a representation $A_{\mathcal{E}}$.
Remark: for $\mathcal{E}=L_{1} \oplus L_{2} \oplus L_{3}$ the summands L_{i} do not induce a determinantal representations (unlike in the rank 2 case) since they are of wrong degree.

We can define a map ψ from C to the space of $3 d \times 3 d \times 3 d$ matrices.
Choose a basis $\left\{s_{1}, \ldots, s_{3 d}\right\}$ for $H^{0}(C, \mathcal{E})$ and define
$x \stackrel{\psi}{\mapsto} \sum_{1 \leq i<j<k \leq 3 d}\left(s_{i}(x) \wedge s_{j}(x) \wedge s_{k}(x)\right)\left(E_{i j k}-E_{j i k}+E_{j k i}+E_{k i j}-E_{k j i}-E_{i k j}\right)$
which extends to

$$
\Psi: \mathbb{P}(\mathcal{E}) \longrightarrow \mathbb{P}\left(\bigwedge^{3} U\right)
$$

In coordinates it equals to a $3 d \times 3 d \times 3 d$ matrix with entries from the space of homogeneous polynomials of degree $d-1$.

- Rank of the constructed $3 d \times 3 d \times 3 d$ matrix along C is 3 .

For an analogue of the Cayley-Hamilton theorem for higher format matrices we need to define:
 - determinant,
 - multiplication,
 - identity,
 - trian.

Determinant

Let A be a $d \times d$ matrix. By definition,

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{d}} \operatorname{sgn}(\sigma) \prod_{i=1}^{d} a_{i, \sigma(i)}
$$

A permutation

$$
\sigma=\left[\begin{array}{lllll}
1 & 2 & 3 & \cdots & d \\
j_{1} & j_{2} & j_{3} & \cdots & j_{d}
\end{array}\right]
$$

can be written as $\left\{\left(1, j_{1}\right),\left(2, j_{2}\right), \ldots,\left(d, j_{d}\right)\right\}$.

$$
\text { Then } \operatorname{det}(A)=\sum_{\sigma \in S_{d}} \operatorname{sgn}(\sigma) \prod a_{1, j_{1}} a_{2, j_{2}} \cdots a_{d, j_{d}} .
$$

Pfaffian

Let A be a $2 d \times 2 d$ skew-symmetric matrix.

$$
\operatorname{Pf}(A)=\sum_{\sigma \in \Pi} \operatorname{sgn}(\sigma) \prod_{i=1}^{d} a_{\sigma(2 i-1), \sigma(2 i)}, \text { where we sum over }
$$

$\Pi=\left\{\sigma \in S_{d}: \sigma(2 i-1)<\sigma(2 i)\right.$ and $\sigma(2 i-1)<\sigma(2 i+1)$.
A partition of $\{1,2, \ldots, 2 d\}$ into pairs can be written as $\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{d}, j_{d}\right)\right\}$ with $i_{k}<j_{k}$ and $i_{k}<i_{k+1}$.
Let $\sigma=\left[\begin{array}{lllllc}1 & 2 & 3 & 4 & \cdots & 2 d \\ i_{1} & j_{1} & i_{2} & j_{2} & \cdots & j_{d}\end{array}\right]$ be the corresponding permutation.
Then $\operatorname{Pf}(A)=\sum_{\sigma \in \Pi} \operatorname{sgn}(\sigma) \prod a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} \cdots a_{i_{d}, j_{d}}$.

Trian

A partition of $\{1,2, \ldots, 3 d\}$ into triplets can be written as $\left\{\left(i_{1}, j_{1}, k_{1}\right),\left(i_{2}, j_{2}, k_{2}\right), \ldots,\left(i_{d}, j_{d}, k_{d}\right)\right\}$ with $i_{m}<j_{m}<k_{m}$ and $i_{m}<i_{m+1}$.

Let $\sigma=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & \cdots & 3 d \\ i_{1} & j_{1} & k_{1} & i_{2} & \cdots & k_{d}\end{array}\right]$ be the corresponding permutation.
We could define

$$
\operatorname{Tri}(A)=\sum_{\sigma \in \Pi} \operatorname{sgn}(\sigma) \prod a_{i_{1}, j_{1}, k_{1}} a_{i_{2}, j_{2}, k_{2}} \cdots a_{i_{d}, j_{d}, k_{d}}
$$

In this case A is a matrix of format $3 d \times 3 d \times 3 d$ representing a three dimensional tensor.

A. Ayyer: Determinants and Perfect Matchings, J. Combin. Theory (2013)

Ayyer gives a combinatorial interpretation of the determinant of a matrix as a generating function over Brauer diagrams. As a corollary he obtains Cayley's relation between determinants and Pfaffians.

Recall irreducible representations of S_{n} :

- the trivial 1-dim representation;
- the 1-dim sign representation $\epsilon: S_{3} \rightarrow \pm 1$,
- S_{3} also has the geometric (or standard) 2-dim representation.
The blocks of the trivial and the sign representation in $V^{\otimes n}$ are Sym $^{n} V$ and $\wedge^{n} V$ respectively. In particular,

$$
S_{2} \text { induces } \quad V \otimes V=S^{2} m^{2} V \oplus \wedge^{2} V
$$

and
S_{3} induces $\quad V \otimes V \otimes V=\operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus$ two copies of V.

Corollary

A matrix $\left[v_{i j k}\right]$ of $t \times t \times t$ format can be written in a unique way as a sum of 6 matrices:

$$
\begin{aligned}
& v_{i j k}=a_{i j k}+b_{i j k}+\omega c_{i j k}+0+e_{i j k}+0, \\
& v_{j k i}=a_{i j k}+b_{i j k}+c_{i j k}+0+\omega e_{i j k}+0, \\
& v_{k i j}=a_{i j k}+b_{i j k}+\omega^{2} c_{i j k}+0+\omega^{2} e_{i j k}+0, \\
& v_{j i k}=a_{i j k}-b_{i j k}+0+\omega d_{i j k}+0+f_{i j k} \text {, } \\
& v_{k j i}=a_{i j k}-b_{i j k}+0+d_{i j k}+0+\omega f_{i j k}, \\
& v_{i k j}=a_{i j k}-b_{i j k}+0+\omega^{2} d_{i j k}+0+\omega^{2} f_{i j k}
\end{aligned}
$$

Here ω is the third root of unity.
Aim: Extend Ayer's construction to matrices with $c_{i j k}=d_{i j k}=e_{i j k}=f_{i j k}=0$ to obtain $\operatorname{det}\left[b_{i j k}\right]=\operatorname{trian}^{3}$.

Cayley-Hamilton theorem generalizes to matrices of even format. They appear in Finsler geometry (relativity and gauge theory) and in fourth-rank gravity.

Tapia, 2008: Invariants and polynomial identities for higher rank matrices

Define $A^{-1}:=\frac{1}{\operatorname{det} A} \frac{\partial \operatorname{det} A}{\partial A}$, which is in terms of components $A^{i j k l}=\frac{1}{\operatorname{det} A} \frac{\partial \operatorname{det} A}{\partial A_{j k l}}$.

Then, $\quad A^{i k_{1} k_{2} k_{3}} A_{j k_{1} k_{2} k_{3}}=\delta_{j}^{i}$.
Note that a $3 d \times 3 d \times 3 d$ matrix needs to be put into $3 d \times 3 d$ format to obtain a nonzero determinant.

Weierstrass canonical form

Theorem

By a projective change of coordinates, every irreducible curve can be brought into the Weierstrass form

$$
y^{2} z=x^{3}+p x z^{2}+q z^{3}, \quad p, q \in \mathbb{C}
$$

or equivalently $y^{2} z=x\left(x+\theta_{1} z\right)\left(x+\theta_{2} z\right), \quad \theta_{1}, \theta_{2} \in \mathbb{C}$.
Moreover, every reduced curve is projectively equivalent to one of the

Weierstrass canonical form

Theorem

By a projective change of coordinates, every irreducible curve can be brought into the Weierstrass form

$$
y^{2} z=x^{3}+p x z^{2}+q z^{3}, \quad p, q \in \mathbb{C}
$$

or equivalently $y^{2} z=x\left(x+\theta_{1} z\right)\left(x+\theta_{2} z\right), \quad \theta_{1}, \theta_{2} \in \mathbb{C}$.
Moreover, every reduced curve is projectively equivalent to one of the

$$
\begin{array}{ll}
x^{3}, x^{2} y, x y(x+y), x y z & \text { or } \\
(\alpha x+\beta y+\gamma z)\left(x^{2}-y z\right) & \text { for some } \alpha, \beta, \gamma \in \mathbb{C}
\end{array}
$$

Why do we want the Weierstrass canonical form?

Corollary

Any coordinate independent statement that holds for a Weierstrass cubic, holds for any irreducible cubic curve.

This implies:

- Determinantal representations of any cubic curve \mathcal{C} are in one to one correspondence with affine points on \mathcal{C}.

Why do we want the Weierstrass canonical form?

Corollary

Any coordinate independent statement that holds for a Weierstrass cubic, holds for any irreducible cubic curve.

This implies:

- Determinantal representations of any cubic curve \mathcal{C} are in one to one correspondence with affine points on \mathcal{C}.

Inflection point

> Every irreducible cubic has inflection points: $\{F=0\} \cap\{$ Hes $F=0\} \subset \mathbb{P}^{2}$.

Proposition

If we find an inflection point on \mathcal{C}, we can put it into the Weierstrass form.

Change the coordinates so that the inflection point is $(0,1,0)$
and the inflection tangent is $z=0$. Considering all possible monomials occurring in F yields the Weierstrass form.

Corollary
When the defining polynomial F is real, a real change of coordinates gives the Weierstrass form with $p, q \in \mathbb{R}$.

Inflection point

Every irreducible cubic has inflection points: $\{F=0\} \cap\{$ Hes $F=0\} \subset \mathbb{P}^{2}$.

Proposition

If we find an inflection point on \mathcal{C}, we can put it into the Weierstrass form.

Change the coordinates so that the inflection point is $(0,1,0)$ and the inflection tangent is $z=0$. Considering all possible monomials occurring in F yields the Weierstrass form.

Inflection point

Every irreducible cubic has inflection points: $\{F=0\} \cap\{$ Hes $F=0\} \subset \mathbb{P}^{2}$.

Proposition

If we find an inflection point on \mathcal{C}, we can put it into the Weierstrass form.

Change the coordinates so that the inflection point is $(0,1,0)$ and the inflection tangent is $z=0$. Considering all possible monomials occurring in F yields the Weierstrass form.

Corollary

When the defining polynomial F is real, a real change of coordinates gives the Weierstrass form with $p, q \in \mathbb{R}$.

Algorithm

- The enumerative problem of locating flexes of a plane cubic is solvable, since the corresponding Galois group is solvable [Harris, 1979].
- When \mathcal{C} contains a rational point [Silverman and Tate, 1992] provided an algorithm that puts it into a Weierstrass form.
A. Ayyer. Determinants and perfect matchings, J. Combin. Theory Ser. A, 120 (2013).
囯 A. Beauville. Determinantal Hypersurfaces, Michigan Math. J. Vol. 48 (2000).

R A. Buckley and T. Košir. Plane Curves as Pfaffians, Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, (2010).

R R. J. Cook and A. D. Thomas. Line bundles and homogeneous matrices, Quart. J. Math. Oxford (1979).
围 I. V. Dolgachev. Classical Algebraic Geometry, Cambridge (2012).
W. Fulton and J. Harris Representation Theory, A First Course, Springer (2004).
E I.M. Gelfand, M.M Kapranov, A.V Zelevinsky Discriminants, Resultants and Multidimensional Determinants, Birkhauser (1994).
(i. J. Harris. Galois groups of enumerative problems, Duke Math. J., Vol. 46 (1979).
囯 V. Tapia. Invariants and polnomial identities for higher rank matrices arXiv 2008
嗇 D. Plaumann, B. Sturmfels and C. Vinzant. Computing linear matrix representations of Helton-Vinnikov curves, Operator Theory: Advances and Applications, Vol. 222 (2012).
R. G. V. Ravindra and A. Tripathi Torsion p[oints and matrices defining elliptic curves, Int J Algebra Comput 24 (2014).

围 J.H. Silverman and J. Tate. Rational Points on Elliptic Curves, Undergraduate Texts in Mathematics, Springer (1992).

- V. Vinnikov. Complete description of determinantal representations of smooth irreducible curves, Linear Algebra and its Applications, Vol. 125 (1989).
围 V. Vinnikov. Elementary transformations of determinantal representations of algebraic curves, Linear Algebra and its Applications, Vol. 135 (1990).

